Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338857

RESUMO

Galleria mellonella is a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed G. mellonella larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Two of these proteins have structural similarities to the styrene-degrading enzymes described so far. In addition, potential hydrolases, isomerases, dehydrogenases, and oxidases were identified that show little similarity to the bacterial enzymes that degrade styrene. However, their response to a diet based solely on polystyrene makes them interesting candidates as a potential new group of polystyrene-metabolizing enzymes in eukaryotes.


Assuntos
Mariposas , Poliestirenos , Animais , Poliestirenos/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Mariposas/microbiologia , Larva/metabolismo , Biodegradação Ambiental
2.
Arch Biochem Biophys ; 727: 109343, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35779594

RESUMO

Diazabicyclooctanone inhibitors such as ETX2514 and avibactam have shown enhanced inhibitory performance to fight the antibiotic resistance developed by pathogens. However, avibactam is ineffective against Acinetobacter baumannii infections, unlike ETX2514. The molecular basis for this difference has not been tackled from a molecular approach, precluding the knowledge of relevant information. In this article, the mechanisms involved in the inhibition of OXA-24 by ETX2514 and avibactam are studied theoretically by hybrid QM/MM calculations. The results show that both inhibitors share the same inhibition mechanisms, comprising acylation a deacylation stages. The involved mechanisms include the same number of steps, transition states and intermediates; although they differ in the involved activation barriers. This difference accounts for the dissimilar inhibitory ability of both inhibitors. The molecular reason for this is the endocyclic double bond in the piperidine ring of ETX2514 increasing the ring strain and chemical reactivity on the N6 and C7 atoms, besides the methyl substituent, which enhance the hydrophobic character of the ring. Furthermore, Lys218 and the carboxylated Lys84 of ETX2514, play a crucial role in the mechanism by coordinating their protonation states in an on/off (protonated/deprotonated) manner, favoring the proton transference between the residues and the inhibitor.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Compostos Azabicíclicos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
3.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742891

RESUMO

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate. A comparison of available crystal structures for arginases reveals an important difference in the extension of two loops located in the entrance of the active site. The first, denominated loop A (I129-L140) contains the residues that interact with the alpha carboxyl group or arginine of arginase, and the loop B (D181-P184) contains the residues that interact with the alpha amino group of arginine. In this work, to determine the importance of these loops in the specificity of arginase, single, double, and triple arginase mutants in these loops were constructed, as well as chimeras between type I human arginase and E. coli agmatinase. In previous studies, the substitution of N130D in arginase (in loop A) generated a species capable of hydrolyzing arginine and agmatine. Now, the specificity of arginase is completely altered, generating a chimeric species that is only active with agmatine as a substrate, by substituting I129T, N130Y, and T131A together with the elimination of residues P132, L133, and T134. In addition, Quantum Mechanic/Molecular Mechanic (QM/MM) calculations were carried out to study the accommodation of the substrates in in the active site of this chimera. With these results it is concluded that this loop is decisive to discriminate the type of substrate susceptible to be hydrolyzed by arginase. Evidence was also obtained to define the loop B as a structural determinant for substrate affinity. Concretely, the double mutation D181T and V182E generate an enzyme with an essentially unaltered kcat value, but with a significantly increased Km value for arginine and a significant decrease in affinity for its product ornithine.


Assuntos
Agmatina , Arginase , Arginase/metabolismo , Arginina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ornitina , Especificidade por Substrato , Ureia
4.
Theranostics ; 12(4): 1518-1536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198055

RESUMO

Objectives: Glucokinase Regulatory Protein (GKRP) is the only known endogenous modulator of glucokinase (GK) localization and activity to date, and both proteins are localized in tanycytes, radial glia-like cells involved in metabolic and endocrine functions in the hypothalamus. However, the role of tanycytic GKRP and its impact on the regulation of feeding behavior has not been investigated. Here, we hypothesize that GKRP regulates feeding behavior by modulating tanycyte-neuron metabolic communication in the arcuate nucleus. Methods: We used primary cultures of tanycytes to evaluate the production of lactate and ß-hydroxybutyrate (ßHB). Similarly, we examined the electrophysiological responses to these metabolites in pro-opiomelanocortin (POMC) neurons in hypothalamic slices. To evaluate the role of GKRP in feeding behavior, we generated tanycyte-selective GKRP-overexpressing and GKRP-knock down mice (GKRPt-OE and GKRPt-KD respectively) using adenovirus-mediated transduction. Results: We demonstrated that lactate release induced by glucose uptake is favored in GKRP-KD tanycytes. Conversely, tanycytes overexpressing GKRP showed an increase in ßHB efflux induced by low glucose concentration. In line with these findings, the excitability of POMC neurons was enhanced by lactate and decreased in the presence of ßHB. In GKRPt-OE rats, we found an increase in post-fasting food avidity, whereas GKRPt-KD caused a significant decrease in feeding and body weight, which is reverted when MCT1 is silenced. Conclusion: Our study highlights the role of tanycytic GKRP in metabolic regulation and positions this regulator of GK as a therapeutic target for boosting satiety in patients with obesity problems.


Assuntos
Células Ependimogliais , Pró-Opiomelanocortina , Animais , Proteínas de Transporte , Comportamento Alimentar , Glucoquinase/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Pró-Opiomelanocortina/metabolismo , Ratos
5.
J Comput Aided Mol Des ; 35(9): 943-952, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34236545

RESUMO

Klebsiella pneumoniae carbapenemase (KPC-2) is the most commonly encountered class A ß-lactamase variant worldwide, which confer high-level resistance to most available antibiotics. In this article we address the issue by a combined approach involving molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The study contributes to improve the understanding, at molecular level, of the acylation and deacylation stages of avibactam involved in the inhibition of KPC-2. The results show that both mechanisms, acylation and deacylation, the reaction occur via the formation of a tetrahedral intermediate. The formation of this intermediate corresponds to the rate limiting stage. The activation barriers are 19.5 kcal/mol and 23.0 kcal/mol for the acylation and deacylation stages, respectively. The associated rate constants calculated, using the Eyring equation, are 1.2 × 10-1 and 3.9 × 10-4 (s-1). These values allow estimating a value of 3.3 × 10-3 for the inhibition constant, in good agreement with the experimental value.


Assuntos
Antibacterianos/química , Compostos Azabicíclicos/química , Klebsiella pneumoniae/enzimologia , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo , Acilação , Sequência de Aminoácidos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Domínio Catalítico , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica , Inibidores de beta-Lactamases/farmacologia
6.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946272

RESUMO

Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer's, Parkinson's, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Ureo-Hidrolases/química , Agmatina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Ureo-Hidrolases/metabolismo
7.
Hypertens Res ; 44(3): 263-275, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33149269

RESUMO

In recent years, the increase in blood pressure at high altitudes has become an interesting topic among high-altitude researchers. In our animal studies using Wistar rats, we observed the existence of two rat populations that exhibit differential physiological responses during hypoxic exposure. These rats were classified as hypoxia-induced hypertensive rats and nonhypertensive rats. A decrease in nitric oxide levels was reported in different hypertension models associated with increased concentrations of asymmetric dimethylarginine (ADMA) and homocysteine, and we recently described an increase in arginase type II expression under hypoxia. ADMA and homocysteine decrease nitric oxide (NO) bioavailability; however, whether ADMA and homocysteine have a regulatory effect on arginase activity and therefore regulate another NO synthesis pathway is unknown. Therefore, the aim of this study was to measure basal ADMA and homocysteine levels in hypoxia-induced hypertensive rats and evaluate their effect on arginase II activity. Our results indicate that hypoxia-induced hypertensive rats presented lower nitric oxide concentrations than nonhypertensive rats, associated with higher concentrations of homocysteine and ADMA. Hypoxia-induced hypertensive rats also presented lower dimethylarginine dimethylaminohydrolase-2 and cystathionine ß-synthase levels, which could explain the high ADMA and homocysteine levels. In addition, we observed that both homocysteine and ADMA had a significant effect on arginase II activation in the hypertensive rats. Therefore, we suggest that ADMA and homocysteine have dual regulatory effects on NO synthesis. The former has an inhibitory effect on eNOS, and the latter has a secondary activating effect on arginase II. We propose that arginase II is activated by AMDA and homocysteine in hypoxia-induced hypertensive rats.


Assuntos
Arginase , Arginina/análogos & derivados , Homocisteína , Hipertensão , Animais , Arginase/metabolismo , Arginina/metabolismo , Modelos Animais de Doenças , Homocisteína/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Hipóxia/complicações , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar
8.
Front Behav Neurosci ; 14: 591204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335480

RESUMO

Stereotactic surgery is a widely used procedure in neuroscience research to study the brain's regulation of feeding behavior. In line with this notion, this study aims to assess how food consumption and feeding patterns are affected in response to the use of auditory bars that preserve or damage the tympanic membrane during stereotactic surgery. Our previous observations led us to hypothesize that the traumatic tympanic membrane rupture affects food intake and feeding patterns in rats undergoing stereotactic procedures. Thereby, female and male rats were cannulated in the third ventricle (3V) using both types of auditory bars. Post-surgical pain was assessed using the grimace scale. Food intake, meal patterns and weight gain or loss were analyzed for 5-7 consecutive days after surgery. Normal food intake, increased body weight and regular meal patterns were observed from postoperative day 2 when the stereotactic procedure was performed using auditory bars that maintain the integrity of the tympanic membrane. However, tympanic membrane rupture prevented the expected recovery of food intake and body weight. This effect was accompanied by an alteration in eating patterns, which was persistent over 7 days of recovery. Thus, tympanic membrane preservation during surgery is necessary to evaluate short-term feeding patterns. This study demonstrates auditory bars that do not damage the tympanic membrane should be used when performing stereotactic surgery for subsequent analysis of rat behavior.

9.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531922

RESUMO

Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions. ALP, despite differing in amino acid sequence from all members of the ureohydrolase family, is strictly dependent on Mn2+ for catalytic activity. However, the Mn2+ ligands have not yet been identified due to the lack of structural information coupled with the low sequence identity that ALPs display with known ureohydrolases. In this work, we generated a structural model of the Mn2+ binding site of the ALP and we propose new putative Mn2+ ligands. Then, we cloned and expressed a sequence of 210 amino acids, here called the "central-ALP", which include the putative ligands of Mn2+. The results suggest that the central-ALP is catalytically active, as agmatinase, with an unaltered Km for agmatine and a decreased kcat. Similar to wild-type ALP, central-ALP is activated by Mn2+ with a similar affinity. Besides, a simple mutant D217A, a double mutant E288A/K290A, and a triple mutant N213A/Q215A/D217A of these putative Mn2+ ligands result on the loss of ALP agmatinase activity. Our results indicate that the central-ALP contains the active site for agmatine hydrolysis, as well as that the residues identified are relevant for the ALP catalysis.


Assuntos
Agmatina/metabolismo , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo , Animais , Sítios de Ligação , Escherichia coli/genética , Cinética , Mamíferos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Temperatura , Ureo-Hidrolases/genética
10.
J Struct Biol ; 211(2): 107533, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450233

RESUMO

Arginase (EC 3.5.3.1) catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and requires a bivalent cation, especially Mn2+ for its catalytic activity. It is a component of the urea cycle and regulates the intracellular levels of l-arginine, which makes the arginase a target for treatment of vascular diseases and asthma. Mammalian arginases contain an unusual S-shaped motif located at the intermonomeric interface. Until now, the studies were limited to structural role of the motif. Then, our interest was focused on functional aspects and our hypothesis has been that the motif is essential for maintain the oligomeric state, having Arg308 as a central axis. Previously, we have shown that the R308A mutant is monomeric and re-associates to the trimeric-cooperative state in the presence of low concentrations of guanidine chloride. We have now mutated Asp204 that interacts with Arg308 in the neighbor subunit, and also we mutated Glu256, proposed as important for oligomerization. Concretely, the human arginase I mutants D204A, D204E, E256A, E256Q and E256D were generated and examined. No differences were observed in the kinetic parameters at pH 9.5 or in tryptophan fluorescence. However, the D204A and E256Q variants were monomeric. On the other hand, D204E and E256D proved to be trimeric and kinetically cooperative at pH 7.5, whereas hyperbolic kinetics was exhibited by E256A, also trimeric. The results obtained strongly support the importance of the interaction between Arg255 and Glu256 in the cooperative properties of arginase, and Asp204 would be relevant to maintain the oligomeric state through salt bridges with Arg255 and Arg308.


Assuntos
Arginase/ultraestrutura , Arginina/genética , Ácido Aspártico/genética , Conformação Proteica , Arginase/química , Arginase/genética , Arginina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Ácido Glutâmico/genética , Humanos , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Mutação/genética , Multimerização Proteica/genética
11.
Microbiologyopen ; 9(3): e989, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970933

RESUMO

Phycobiliproteins (PBPs) are colored fluorescent proteins present in cyanobacteria, red alga, and cryptophyta. These proteins have many potential uses in biotechnology going from food colorants to medical applications. Allophycocyanin, the simplest PBP, is a heterodimer of αß subunits that oligomerizes as a trimer (αß)3 . Each subunit contains a phycocyanobilin, bound to a cysteine residue, which is responsible for its spectroscopic properties. In this article, we are reporting the expression of recombinant allophycocyanin (rAPC) from the eukaryotic red algae Agarophyton chilensis in Escherichia coli, using prokaryotic accessory enzymes to obtain a fully functional rAPC. Three duet vectors were used to include coding sequences of α and ß subunits from A. chilensis and accessorial enzymes (heterodimeric lyase cpc S/U, heme oxygenase 1, phycocyanobilin oxidoreductase) from cyanobacteria Arthrospira maxima. rAPC was purified using several chromatographic steps. The characterization of the pure rAPC indicates very similar spectroscopic properties, λmaxAbs , λmaxEm , fluorescence lifetime, and chromophorylation degree, with native allophycocyanin (nAPC) from A. chilensis. This method, to produce high-quality recombinant allophycocyanin, can be used to express and characterize other macroalga phycobiliproteins, to be used for biotechnological or biomedical purposes.


Assuntos
Eucariotos/genética , Ficocianina/biossíntese , Ficocianina/genética , Células Procarióticas/enzimologia , Proteínas Recombinantes , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Vetores Genéticos/genética , Peso Molecular , Ficocianina/isolamento & purificação , Análise Espectral
12.
J Inorg Biochem ; 202: 110812, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731096

RESUMO

Ureohydrolases form a conserved family of enzymes with a strict requirement for divalent metal ions for catalytic activity. They catalyze the hydrolysis of the guanidino group and produce urea. In their active sites six highly conserved amino acid residues form a binding pocket for two catalytically essential metal ions that are needed to activate a water molecule to initiate the hydrolysis of the guanidino group in a nucleophilic attack. Focus in this review is on two members of the ureohydrolase family, the Mn2+-dependent arginase and agmatinase, which play important roles in functions related to replication and cell survival. We will focus in particular on Mn2+ binding interactions, and on how this metal ion contributes to the reaction catalyzed by these enzymes. We also include the agmatinase-like protein (ALP) because it is functionally closely related to agmatinase, also requires at least one Mn2+ ion for catalytic activity, but may possess an active site that differs significantly from all other known ureohydrolases.


Assuntos
Arginase , Manganês , Ureo-Hidrolases , Arginase/química , Arginase/metabolismo , Catálise , Manganês/química , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo
14.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324056

RESUMO

An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Resveratrol/farmacologia , Animais , Humanos
15.
Front Neurosci ; 13: 275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983961

RESUMO

Glucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, ß-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP. In liver, when glucose concentration is low, GKRP binds to GK holding it in the nucleus, while the rise in glucose concentration induces a rapid export of GK from the nucleus to the cytoplasm. In contrast, hypothalamic tanycytes display inverse compartmentalization dynamic in response to glucose: a rise in the glucose concentration drives nuclear compartmentalization of GK. The underlying mechanism responsible for differential GK subcellular localization in tanycytes has not been described yet. However, it has been suggested that relative expression between GK and GKRP might play a role. To study the effects of GKRP expression levels in the subcellular localization of GK, we used insulinoma 832/13 cells and hypothalamic tanycytes to overexpress the tanycytic sequences of Gckr. By immunocytochemistry and Western blot analysis, we observed that overexpression of GKRP, independently of the cellular context, turns GK localization to a liver-like fashion, as GK is mainly localized in the nucleus in response to low glucose. Evaluating the expression levels of GKRP in relation to GK through RT-qPCR, suggest that excess of GKRP might influence the pattern of GK subcellular localization. In this sense, we propose that the low expression of GKRP (in relation to GK) observed in tanycytes is responsible, at least in part, for the compartmentalization pattern observed in this cell type. Since GKRP behaves as a GK inhibitor, the regulation of GKRP expression levels or activity in tanycytes could be used as a therapeutic target to regulate the glucosensing activity of these cells and consequently to regulate feeding behavior.

16.
Front Physiol ; 9: 606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896110

RESUMO

There are animal species that have adapted to life at high altitude and hypobaric hypoxia conditions in the Andean highlands. One such species is the llama (Lama glama), which seem to have developed efficient protective mechanisms to avoid maladaptation resulting from chronic hypoxia, such as a resistance to the development of hypoxia -induced pulmonary hypertension. On the other hand, it is widely known that different models of hypertension can arise as a result of changes in endothelial function. The respect, one of the common causes of deregulation in endothelial vasodilator function have been associated with down-regulation of the NO synthesis and an increase in plasma levels of asymmetric dimethylarginine (ADMA) and homocysteine. Additionally, it is also known that NO production can be regulated by plasma levels of L-arginine as a result of the competition between nitric oxide synthase (NOS) and arginase. The objective of this study, was to determine the baseline concentrations of ADMA and homocysteine in llama, and to evaluate their effect on the arginase pathway and their involvement in the resistance to the development of altitude-induced pulmonary hypertension. METHOD: Lowland and highland newborn sheep and llama were investigated near sea level and at high altitude. Blood determinations of arterial blood gases, ADMA and homocysteíne are made and the effect of these on the arginase activity was evaluated. RESULTS: The basal concentrations of ADMA and homocysteine were determined in llama, and they were found to be significantly lower than those found in other species and in addition, the exposure to hypoxia is unable to increase its concentration. On the other hand, it was observed that the llama exhibited 10 times less arginase II activity as compared to sheep, and the expression was not induced by hypoxia. Finally, ADMA y Hcy, has no effect on the type II arginase pathway. CONCLUSION: Based on our results, we propose that low concentrations of ADMA and homocysteine found in llamas, the low expression of arginase type II, DDAH-2 and CBS, as well as its insensitivity to activation by homocysteine could constitute an adaptation mechanism of these animals to the hypoxia.

17.
Glia ; 66(3): 592-605, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178321

RESUMO

Glucose is a key modulator of feeding behavior. By acting in peripheral tissues and in the central nervous system, it directly controls the secretion of hormones and neuropeptides and modulates the activity of the autonomic nervous system. GLUT2 is required for several glucoregulatory responses in the brain, including feeding behavior, and is localized in the hypothalamus and brainstem, which are the main centers that control this behavior. In the hypothalamus, GLUT2 has been detected in glial cells, known as tanycytes, which line the basal walls of the third ventricle (3V). This study aimed to clarify the role of GLUT2 expression in tanycytes in feeding behavior using 3V injections of an adenovirus encoding a shRNA against GLUT2 and the reporter EGFP (Ad-shGLUT2). Efficient in vivo GLUT2 knockdown in rat hypothalamic tissue was demonstrated by qPCR and Western blot analyses. Specificity of cell transduction in the hypothalamus and brainstem was evaluated by EGFP-fluorescence and immunohistochemistry, which showed EGFP expression specifically in ependymal cells, including tanycytes. The altered mRNA levels of both orexigenic and anorexigenic neuropeptides suggested a loss of response to increased glucose in the 3V. Feeding behavior analysis in the fasting-feeding transition revealed that GLUT2-knockdown rats had increased food intake and body weight, suggesting an inhibitory effect on satiety. Taken together, suppression of GLUT2 expression in tanycytes disrupted the hypothalamic glucosensing mechanism, which altered the feeding behavior.


Assuntos
Comportamento Alimentar/fisiologia , Transportador de Glucose Tipo 2/metabolismo , Hipotálamo/metabolismo , Neuroglia/metabolismo , Saciação/fisiologia , Animais , Peso Corporal , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Células Cultivadas , Jejum/metabolismo , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 2/genética , Hipotálamo/citologia , Masculino , Neuroglia/citologia , Neuropeptídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
18.
Metabolism ; 81: 35-44, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29162499

RESUMO

Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders. Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the more recently identified AGM-like protein (ALP). In rat brain, agmatine, AGM and ALP are predominantly localised in areas associated with roles in appetitive and craving (drug-reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the treatment of addictions. In this review, the properties of DAO, AGM and ALP are discussed with a view to their role in the agmatine metabolism in mammals.


Assuntos
Agmatina/metabolismo , Neurotransmissores/metabolismo , Amina Oxidase (contendo Cobre)/fisiologia , Animais , Carboxiliases/fisiologia , Humanos , Ureo-Hidrolases/fisiologia
19.
Biol Res ; 50(1): 39, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221464

RESUMO

BACKGROUD: Ferredoxin NADP(H) oxidoreductases (EC 1.18.1.2) (FNR) are flavoenzymes present in photosynthetic organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS soluble protein acceptor of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a structural analysis of the complex FNR/Fd. METHODS: The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phycobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5'RACE was used to confirm the absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by comparative modeling and a model for the complex FNR: Fd by docking. RESULTS: The kinetic analysis shows KMNADPH of 12.5 M and a k cat of 86 s-1, data consistent with the parameters determined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent. Transcriptome analysis of Gch revealed the presence of two Fd; FdL and FdS , sharing the motif CX5CX2CX29X. The analysis indicated that the most probable partner for FNR is FdS. CONCLUSION: The interaction model produced, was consistent with functional properties reported for FNR in plants leaves, and opens the possibilities for research in other rhodophyta of commercial interest.


Assuntos
Ferredoxina-NADP Redutase/química , Ferredoxinas/metabolismo , Gracilaria/enzimologia , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/farmacocinética , Gracilaria/química , Oxirredução , Fotossíntese/fisiologia
20.
Sci Rep ; 7(1): 3697, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623340

RESUMO

Glucokinase (GK), the hexokinase involved in glucosensing in pancreatic ß-cells, is also expressed in arcuate nucleus (AN) neurons and hypothalamic tanycytes, the cells that surround the basal third ventricle (3V). Several lines of evidence suggest that tanycytes may be involved in the regulation of energy homeostasis. Tanycytes have extended cell processes that contact the feeding-regulating neurons in the AN, particularly, agouti-related protein (AgRP), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) neurons. In this study, we developed an adenovirus expressing GK shRNA to inhibit GK expression in vivo. When injected into the 3V of rats, this adenovirus preferentially transduced tanycytes. qRT-PCR and Western blot assays confirmed GK mRNA and protein levels were lower in GK knockdown animals compared to the controls. In response to an intracerebroventricular glucose injection, the mRNA levels of anorexigenic POMC and CART and orexigenic AgRP and NPY neuropeptides were altered in GK knockdown animals. Similarly, food intake, meal duration, frequency of eating events and the cumulative eating time were increased, whereas the intervals between meals were decreased in GK knockdown rats, suggesting a decrease in satiety. Thus, GK expression in the ventricular cells appears to play an important role in feeding behavior.


Assuntos
Adenoviridae/fisiologia , Comportamento Alimentar , Glucoquinase/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Infecções por Adenoviridae , Animais , Encefalite/etiologia , Encefalite/metabolismo , Encefalite/patologia , Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Hipotálamo/patologia , Hipotálamo/virologia , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...